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We demonstrate the feasibility of using a non-conforming, piecewise harmonic
finite element method on an unstructured grid in solving a magnetospheric physics
problem. We use this approach to construct a global discrete model of the magnetic
field of the magnetosphere that includes the effects of shielding currents at the outer
boundary (the magnetopause). As in the approach of F. R. Toffolettoet al. (1994,
Geophys. Res. Lett.21, 7) the internal magnetospheric field model is that of R. V.
Hilmer and G.-H. Voigt (1995,J. Geophys. Res.) while the magnetopause shape is
based on an empirically determined approximation (1997, J. Shueet al., J. Geophys.
Res.102, 9497). The results is a magnetic field model whose field lines are completely
confined within the magnetosphere. The presented numerical results indicate that the
discrete non-conforming finite element model is well-suited for magnetospheric field
modeling. c© 1999 Academic Press

Key Words:magnetopause; magnetosphere; Chapman–Ferraro currents; non-
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1. INTRODUCTION

The Earth’s magnetosphere is formed by the interaction of the solar wind with the Earth’s
magnetic field. This interaction, to zeroth-order, causes the solar wind to flow around the
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cavity carved out by the Earth’s magnetic field forming the region known as the magne-
tosphere. The magnetospheric shape is compressed on the upstream or sunward side and
stretched out to form a long tail in the downstream region. This solar-wind magnetosphere
interaction produces currents both within the magnetosphere and at the boundary (the mag-
netopause). The magnetopause currents, often called the Chapman–Ferraro currents [3],
confine the magnetospheric magnetic field lines within the magnetosphere in the idealized
case of a closed magnetosphere considered here.

Let Ä be a three dimensional domain representing the Earth’s magnetosphere,∂Ä the
boundary,∂ÄMP the magnetopause, and∂ÄTAIL be the downstream boundary (so that
∂Ä= ∂ÄMP+ ∂ÄTAIL ). We define the internal source magnetic fieldBS for any x ∈Ä
to include (1) the magnetic field of Earth’s dipole moment, (2) the tail field generated by
currents flowing in the Earth’s tail, and (3) the ring current field which is generated by a
region of trapped plasma in the near-Earth region. Note that the methods outlined here are
general enough to be applicable to any magnetic field model. The Chapman–Ferraro field
BCF results from the shielding Chapman–Ferraro current at the magnetopause∂ÄMP. The
total normal component at the magnetopause for a closed magnetosphere is then

(BS(x)+ BCF(x)) · n = 0, x ∈ ∂ÄMP, (1.1)

wheren is the outward unit vector normal to the magnetopause∂ÄMP. (Details of the
Hilmer–Voigt magnetic field modelBS can be found in [5].) By definition, the Chapman–
Ferraro fieldBCF is curl-free inÄ, thus it can be computed as the negative gradient of a
scalar potential8

BCF(x)
def= −∇8(x), x ∈ Ä. (1.2)

Since the magnetic fieldBCF is also required to be divergence-free, we have

18(x) = 0, x ∈ Ä. (1.3)

The solution of Eq. (1.3) subject to the boundary condition (1.1) is called the Chapman–
Ferraro problem [3]. A general discussion of this problem and a review of early work can
be found in [23, 13].

A perturbation of this shielding process occurs when there is a small but finite normal
component of the magnetic field at the magnetopause [17, 18]. The method we present here
is applicable to an arbitrary magnetopause boundary condition and is readily adapted to
the open magnetosphere modeling approach introduced in [17]. The open magnetosphere
is modeled by replacing (1.1) with a non-homogeneous Neumann boundary condition.

If the magnetopause coincides with one of the coordinate surfaces (e.g., sphere) of a
system in which Laplace’s equation is separable [11], then8 may be expanded in har-
monic functions of that system and the coefficients may be derived by an inversion integral.
Examples include spherical coordinates with a spherical magnetopause [24], parabolic co-
ordinates with a paraboloid-of-revolution magnetopause [1, 15], elliptic coordinates with an
ellipsoidal magnetopause [20], and a combination of spherical and cylindrical coordinates
with a hemi-spherical dayside magnetopause joined to a semi-infinite cylinder tail magne-
topause [22, 24]. While these approaches have provided elegant and useful magnetic field
models, the restrictions imposed by the technique limit the class of magnetopause shapes
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that can be considered. For example, the magnetopause shape that results from a magneto-
hydrodynamic (mhd) pressure-balance calculation, where the shocked solar-wind pressure
is balanced against the internal magnetic-field pressure, does not generally coincide with
any of the shapes for which a separable solution to (1.3) can be found.

An alternative approach for non-separable solutions of (1.3) has been implemented in
[16]. The coefficients are fitted to the boundary condition by least squares [16, 21]. A
finite difference method has been used in [19] using a curvilinear grid but the technique is
restricted to axis-symmetric magnetopause shapes.

The next section describes in detail the technique for solving the Chapman–Ferraro prob-
lem using non-conforming finite elements and includes a description of the non-conforming
formulation.

2. THE FINITE ELEMENT SOLUTION OF THE CHAPMAN–FERRARO PROBLEM

2.1. Magnetopause Shape Approximation

We have taken the Earth’s magnetosphereÄ to have the boundary given by the function
used in [14]. We approximate the magnetopause∂Ä by the function

RMP = R0

(
2

1+ cos(α)

)β
, (2.1)

whereR0 is a standoff distance, andα is an angle such thatα= 0 corresponds to the location
(x, y, z)= (R0, 0, 0) (cf. Fig. 1). The parameterβ determines the downstream flaring angle
of the magnetopause; for simplicity a value ofβ = 0.5 is used.

The three-dimensional magnetospheric cavity is generated by a rotation about thex-axis
to produce an axisymmetric magnetopause. Non-axisymmetric magnetopause shapes are
modeled by making the magnetotail radiusRMP a function of the angleϕ. For the Earth’s

FIG. 1. The geometry and the coordinate system used in this work wherex points towards the sun. The angle
ϕ is the cylindrical coordinate out of thex− z plane. In this coordinate system, the Earth’s dipole field tilts in the
x− z plane at an angleϕ. The tail boundary is labeled∂ÄTAIL .
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magnetosphere,R0 varies between 8–12 Earth radii (RE) although during extreme solar
wind conditions it can become as small as 4RE. For the cases presented here, a constant
value of 10RE was used.

2.2. The Non-conforming Finite Element Formulation

The definition of a finite element consists of the triplet: (1) the geometryÄh, (2) the
polynomial spaceP, and (3) the degrees of freedom6; all of these components are de-
scribed in more detail below. The finite element approximation of the potential8 of the
Chapman–Ferraro magnetic fieldBCF is based on the spatially averaged non-conforming
finite element introduced in [12]. (By definition, conforming finite element spaces con-
sists of a set of functions that are globally continuous while non-conforming finite element
spaces contain also discontinuous functions.) This approximation has been extensively used
in [6] to approximate almost everywhere discontinuous deformations associated with the
Martensitic transformation. The detailed numerical analysis of a generalization of this finite
element has been given in [8].

LetÄ be a bounded domain with Lipschitz boundary and let us assume that the necessary
compatibility condition for the interior Neumann problem is satisfied, i.e.,

∫
∂Ä

BS · n dS= 0, (2.2)

as well as ∫
∂Ä

BCF · n dS= 0. (2.3)

We use the following formulation to solve the Laplace’s equation (1.1) coupled with the
Neumann boundary condition (1.1) using finite elements. The function8∈W1,2(Ä) is
called theweak solution of the Chapman–Ferraro problem(1.3) with the homogeneous
Neumann boundary condition(1.1) if

∫
Ä

∇8(x)∇v(x) dx =
∫
∂Ä

BS · nv dS, for anyv ∈ W1,2(Ä), (2.4)

whereW1,2(Ä)
def= {v :

∫
Ä
|∇v(x)|2 + |v(x)|2 dx<∞}. It is well known that the interior

Neumann problem (2.4) has at most one solution and that the solution is determined up
to an arbitrary additive constant. The solution can be singled out by assuming any of the
conditions

∫
Ä

u(x) dx= 0 or
∫
∂Ä

u dS= 0 or by fixing the solution8 at some point on∂Ä.
The application of a non-conforming finite element method is often desirable when

the approximated functions or their derivatives are discontinuous or if the approximated
functions contain singularities. A priori this approach does not guarantee that the discrete
functions would be continuous. The lack of continuity allows a precise approximation of
discontinuities and variations that can be concentrated on a very small part of the compu-
tational domain. Another advantage of this approach is in the point-wise compliance with
various (additional) differential requirements such as the divergence-free condition or local
harmonicity.
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FIG. 2. An illustration of computational domainÄh. The left figure highlights the tail of the domain that
shows imbedded cubesQh. In this figure, each particular elementQh is shrunk by about 30% to illustrate the
partitionτh.

In order to implement the non-conforming finite element method we partition the com-
putational domainÄh into quadrilateralsQh such that

Äh
def=

⋃
Qh∈τh

Qh. (2.5)

The setτh contains all the elements used to reconstruct the domainÄh. In particular,
we assume that the boundary of the computational domain is piecewise linear. Figure 2
shows the computational domain where each element has been shrunk by 30% to illustrate
the partitionτh.

Theaveraged harmonicfinite element we used in our calculations [12, 8] is a polynomial
from the finite dimensional space

P = Span{1, x, y, z, x2− y2, x2− z2} (2.6)

when restricted toQh ∈ τh. We note that

−div∇ p(x, y, z) = 0, for any p ∈ P and(x, y, z) ∈ Qh. (2.7)

Hence the gradients of these polynomials are divergence-free in every quadrilateralQh ∈ τh.
We approximate the potential8 by the discrete potential8h that is computed by

8h(x, y, z) =
Nh∑

i=1

αi vi (x, y, z), for any(x, y, z) ∈ Qh, Qh ∈ τh. (2.8)

The functionsvi in (2.8) are polynomials from the polynomial space (2.6) when restricted
to any elementQh. The values at different points of the computational domainÄh of these
functions are connected by theaveraged weak continuitycondition∫

F
vh|Q′h dS=

∫
F
vh|Q′′h dS, for any faceF = ∂Q′h ∩ ∂Q′′h 6= ∅, Q′h, Q′′h ∈ τh. (2.9)
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We note that this is the weakest condition possible to ensure that a change at one point of
Äh will effect any other value of a functionvi . Namely, without any additional continuity
condition of the type (2.9) we would not be able to implement the boundary conditions.

The possible discontinuity of the approximate potential does not allow us to use the stan-
dard gradient operator∇. We have to extend this operator on a larger class of discontinuous
functions. The extension∇h is defined with respect to the partitionτh by

∇h8h(x, y, z) = ∇8h(x, y, z) for(x, y, z) ∈ Qh. (2.10)

Thus the extended gradient operator agrees with the standard definition inside any element
Qh. Thediscrete gradient operator∇h is defined using one-sided limits on the boundary
of Qh and it ignores the effect of discontinuities along∂Qh.

The non-conforming finite element formulation of (2.4) reads:Findαi ∈R, i = 1, 2, . . . ,
Nh, such that

Nh∑
i=1

Nh∑
j=1

αi

∫
Qj

∇vi (x, y, z)∇vk(x, y, z) dx =
∫
∂Äh

BS · nvk dS,

for any k= 1, 2, . . . , Nh. (2.11)

All operations involving integrals of various quantities are done on a parent finite element
which in this case is a unit cube. The partitionQh is mapped onto the unit cube (using tri-
linear mapping) and all integrals are done using substitution. EachQh has a fixed number of
degrees of freedom (DOF) and polynomial spaceP associated with it. The mapping process
does not guarantee that these quantities are preserved [4]. In our case, since the DOF are the
integrals over the faces ofQh this quantity is preserved but the polynomial space is not. In
other words, the mapping required to map the unit cube onto any of the elementsQh ∈ τh

does not preserve the polynomial spaceP in which we are approximating the potential8.
By computing appropriate scaling factors,P can be preserved. However, calculations with
and without these scaling factors showed similar results which suggests that this deficiency
does not introduce an additional error beyond theO(h) precision associated with the non-
conformity of the approximation.

2.3. Boundary Conditions

As mentioned in the Introduction the boundary of the computational domainÄ is divided
into two parts:∂ÄMP and∂ÄTAIL . The applied Neumann boundary condition, as required
to satisfy (2.3), is

BCF(x) · n = −BS(x), for x ∈ ∂ÄMP (2.12)

while on the tailward boundary(∂ÄTAIL ) we make the simplifying assumption that the
normal component(BTAIL ) on ∂ÄTAIL is constant and is defined by

BCF(x) · n = BTAIL =
∫
∂ÄMP

BS · n dS

meas(∂ÄTAIL )
, x ∈ ∂ÄTAIL , (2.13)

where meas(∂ÄTAIL ) is the cross-sectional area of the region∂ÄTAIL . The formula (2.13)
ensures that (2.3) is satisfied.
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3. RESULTS

3.1. Calculations with Zero Tilt

Computation of the magnetic field with zero tilt (i.e., when the source magnetic field
BS points in the direction(0, 0,−1)) constitutes a mathematically and physically simpler
problem. In this case,

∫
∂ÄMP

BS · n dS= 0 so that Eq. (2.13) results in the simple bound-
ary conditionBCF(x) · n= 0 for all x ∈ ∂ÄTAIL . This condition states that at a sufficiently
distant downstream location the solution8 is independent of downstream position (i.e.,
∂8/∂x= 0).

The solution was implemented using a three-dimensional version of the finite element
analysis tool (FEAT) [2]. The calculations used a low spatial resolution to provide sufficient
computational evidence of the efficiency of the method. Namely, we take thex-direction
resolutionhx to be 80/21, andhy= hz∼ 40/12, measured at the diameter ofÄh. As ex-
pected, calculations with a finer grid produced similar results to the ones shown here but
were substantially more expensive. The numerical integration associated with evaluation of
the variational integrals in (2.11) is done using a Hammer and Stroud cubature formula that
is accurate up to polynomials of order 5. The partitionτh in combination with the presented
finite element and high-order numerical integration yields a system matrixAh representing
the system (2.11) with low condition number. (A lower order integration scheme yielded
matrices with higher condition numbers.)

The discrete weakly harmonic solution to (2.11) must be symmetric. The fieldlines are
computed using an Euler integration routine with adaptive stepsize. The result is shown
in Fig. 3 which represents thex− z view of the computed fieldlines. One of the impor-
tant tests of the solution8h is to check if the fieldlines corresponding to∇8h which
originate in a plane stay in this plane. The non-conforming approximation allows for a
lot of freedom in this sense. The fieldlines stay within a range ofy=±0.05 except for

FIG. 3. The fieldlines given by the computed solution∇8h in thex− zplane. The outer heavy line represents
the magnetopause location.
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FIG. 4. The fieldlines corresponding to the dipole field tilted by 35◦.

the fieldlines that pass extremely close to the singularity inBs. This means that lateral
approximation error is about 0.1% which is well beyond they-direction resolutionhy∼ 31

3.
The lateral numerical stability seems to be a consequence of the point-wise harmonicity
of the spatial approximation. We also computed solutions using a conforming element,
but solutions of similar accuracy to the non-conforming element proved more difficult to
achieve.

3.2. Calculations with Nonzero Tilt

When the dipole tilt angleφ is nonzero we have∫
∂ÄMP

BS · n dS 6= 0 (3.1)

in Eq. (2.13), resulting in a nonzero value for the normal component on∂ÄTAIL in (2.3).
An example of a magnetic field configuration where the dipole field is tilted by 35◦ is

shown in Fig. 4. A three-dimensional perspective plot is shown in Fig. 5. Note that for
nonzero tilt the Hilmer–Voigt magnetic field model also displaces the tail field off the
x− y-plane. In both figures the heavy lines denote the location of the magnetopause.

3.3. Calculations with a Non-axisymmetric Magnetopause

A further application of our discrete model is the computation of a configuration where
the magnetopause shape is no longer axisymmetric. In this case, the methods described in
the previous section are the same with the exception that meas(∂ÄTAIL ) becomes the cross-
sectional area of∂ÄTAIL . Pressure balance considerations indicate that the magnetopause
should be indented in a region where the magnetic field is a minimum (the cusp); such an
indentation has been modeled and is shown in Figure 6. The resulting field line configuration
is shown in Figs. 7 and 8. Figure 8 shows that they-extent has been compressed.
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FIG. 5. Three-dimensional plot of the final field configuration for the tilted dipole field. The heavy lines
illustrate the location of the magnetopause.

4. SUMMARY AND CONCLUSIONS

We have used a non-conforming finite-element method to generate a discrete magneto-
spheric field model. This type of technique is a generalization and extension of previous
work with a variety of possible applications in magnetospheric modeling. The numeri-
cal calculations indicate that non-conforming finite elements can be successfully used to

FIG. 6. Grid configuration for the case of a non-axisymmetric magnetopause.
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FIG. 7. Fieldline plots as viewed in thex− z plane for the case of a non-axisymmetric magnetopause; the
indentations were placed near the local minimum in the magnetic field, the location of which is asymmetric with
respect toz. The outer-heavy line represents the magnetopause location.

approximate continuous quantities. The resulting method presented in this paper proves to
be robust and to a large extent independent of the underlying unstructured grid. The local
harmonicity of the finite elements used in our calculations proves to be useful in maintaining
the symmetry of the solution even close to the singularity.

FIG. 8. Fieldline plots as viewed in a three-dimensional perspective plot for the case of a non-axisymmetric
magnetopause. The outer-heavy line represents the magnetopause location. The indentations are placed near
minima in the internal magnetic field.
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Our discrete method can be used to extend and generalize empirically based magnetic
field [21] and theoretical models [18] by allowing arbitrary magnetopause shapes to be
used in calculations. The results presented in this paper provide evidence that possible lack
of continuity does not play an important role when the approximated field quantities are
smooth. This observation leads us to believe that the non-conforming finite element method
described in this work will be a valuable tool for the approximation of the MHD equations
that contain mixture of difficulties such as discontinuities, and divergence-free as well
as smooth field quantities. The application of a spatially non-conforming approximation
using finite elements provides a simple tool for simultaneous treatment of the difficulties
mentioned above.
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